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Implementation of logical functions in the Game of Life

Abstract: The Game of Life cellular automaton is a classical example of a massively parallel collision-based
computing device. The automaton exhibits mobile patterns, gliders, and generators of the mobile patterns, glider
guns, in its evolution. We show how to construct basic logical operations, AND, OR, NOT in space-time
configurations of the cellular automaton. Also decomposition of complicated Boolean functions is discussed.
Advantages of our technique are demonstrated on an example of binary adder, realized via collision of glider
streams.

The Game of Life (Life) is probably the most well known cellular automaton. The rules of its
behavior were discovered by John Conway at the end of the 1960s. The presentation of
Conway's construction by Martin Gardner in the October 1970 issue of Scientific American
made it so famous that, in 1974, Time magazine even complained about how much computer
time could be wasted because "growing hordes of fanatics" spent their office days playing with
the new "toy". The newly discovered cellular automata rules were called "the Game of Life"
because Conway " ... wanted to see some self-reproducing animal ... displaying some interesting
behavior. In a weak form, living ... " [3]. He succeeded.

Obviously, the "living" is seen as a metaphor in the Game of Life context, also no
spontaneous nontrivial self-reproducing patterns were found. However, the Game of Life
possesses abilities to self-reproduction [6] as well as computational universality [5]. Actually, a
simulation of the Game of Life universality was proved by its creator [1]. He showed that a
universal Turing machine is embedded in the Game of Life, i.e. behavior of the Turing machine is
imitated by space-time dynamic of the Game of Life cellular automaton. This chapter deals
rather with computational, or logic, universality. We will present quite a simple way to
implement any Boolean function in patterns of the Game of Life. All constructions discussed in
the chapter are designed in LogiCell Java applet [4].

Sect. 1.1 offers a short survey of the Game of Life and introduces some basic patterns, that will
be used in further constructions. In Sect. 1.2 we present logical gates and Boolean operators.
Sect. 1.3 introduces particulars of collisions between mobile patterns in the Game of Life.
Implementation of fundamental Boolean operators in space-time dynamics of the Game of Life
is studied in Sect. 1.4. We show how to combine logical gates, in order to manage complex Boolean
equations, in Sect. 1.5. The rest of the chapter deals with the solution of a simple combinatorial
problem, the construction of a binary adder.

1.1 Basic Features of the Game of Life

The Game of Life is a two dimensional cellular automaton with binary cell states and Moore
neighborhood. Each cell of the automaton takes either 0 or 1 state (we can call them living or
dead, active or quiescent) and updates its state in discrete time depending on the states of its
eight closest neighbors (Fig. 1.1a).



Rennard Implementation of Logical Functions in the Game of Life

           
(a) (b)

Fig. 1.1. The Game of Life basics. (a) Cell neighborhood: central cell is a disc and its eight closest neighbors are "+"s.
(b) Cell state transition: nodes of the graph are states of a cell, arcs symbolize cell state transitions, they are labeled
by numbers of neighbors that cause the transition.

Even though the Game of Life can easily be redefined in a totalistic manner, it has been
originally designed as a semi-totalistic automaton. When a cell updates its state, it does not look
at the exact configuration of its neighborhood but only considers the number of active
neighbors. Also, the cell itself is excluded from its neighborhood. Thus, cells of the Game of
Life obey the three simple rules:

Rl:  A dead (0) cell with exactly three active neighbors becomes alive (1).
R2:  A living (1) cell with two or three active neighbors remains alive (1).
R3:  In any other case the cell dies or remains quiescent/dead.

Essentially, each cell is a finite state automaton, therefore the cell state transition rules can be
expressed in a classical automaton state transition diagram (Fig 1.1b).

Using terms of population dynamic one can say that for a cell to be born its local density of
population must be large enough (the rule Rl). The cells die of loneliness (less than two neighbors)
or overpopulation (more than three neighbors), the rule R3. The rules generate quite a complex, not
"mechanical", dynamic of the cellular automaton, where patterns of "alive" cells grow and
change their appearance in an unpredictable way. S. Wolfram considered the Game of Life as a
typical example of a complex cellular automaton, belonging to the class IV of its hierarchy of cellular
automata [7].

(a)

(b)

Fig. 1.2. Two simple immobile patterns in the Game of Life. (a) Formation of a stable pattern (beehive). (b) An
oscillating pattern (blinker).

When we fill a lattice with 0s and 1s at random and allow the configurations to develop for a
while we find that after some time most patterns inhabiting the lattice can be classified as follows:

- Stable patterns. They remain unchanged if not disturbed. The simplest one is the 2 x 2
cell square block. Another example is the generation of a beehive (Fig. 1.2a).
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- Blinkers. They usually change their configuration in a very short cycle. For example, in
Fig 1.2b, we can see a three-cells pattern, blinker, oscillating between horizontal and
vertical forms.

In studies of the Game of Life a particular pattern, R-pentomino (Fig. 1.3a), was discovered.
It was thought to be a minimal initial configuration that generates unpredictably developing
patterns; the R-pentomino stabilizes only after 1103 generations. Actually, the R-pentomino
generates a cluster of small stable or oscillating patterns, and also produces six mobile patterns
(Fig. 1.3b), that run away from the R-pentomino original position as photons from the Sun. This
mobile pattern consists of five non-zero states, the configuration of which is changed in cycle to
translate the pattern along the lattice (Fig. 1.3c). The glider runs with the speed of c/4, where c is
what Conway called the "speed of light", one cell jump.

Gliders belong to a class of spaceships, compact mobile patterns, that can be used as signals, or
information quanta, in collision-based computing devices. Actually, spaceships were considered
essential for the design of a universal Turing machine and there should be a pattern that produces
spaceships. The last one, known as a glider gun, was discovered at the end of 1970 by R. Gosper. Its
p30 glider gun is shown in Fig. 1.4. This pattern generates a glider every 30th step of discrete time.
During more than a quarter of a century hundreds of glider guns, with various periods of gliders
emissions, have been found. Traditionally, we will deal with the p30 gun as a core pattern in our
constructions of logical gates.

     
                                           (a)                                   (b)

(c)
Fig. 1.3. The glider and its historical precursor. (a) Pentomino. (b) Configuration developed from the
pentomino, at the 224th step of evolution; the gliders are encircled, and their velocity vectors are sketched. (c) The
glider.

Fig. 1.4. The p30 glider gun.
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1.2 Logical Gates

A logical gate is some kind of "black box" which is able to process two Boolean variables, inputs,
according to a specified Boolean operator. There are three main gates, which correspond to the three
fundamental operators defined by George Boole.

The AND operator is true if both inputs are true. The notation is a ^ b.

Fig. 1.5. Diagrams of the AND, OR and NOT gates.

The electrical diagram of the AND-gate (Fig. 1.5, left) shows that both switches a and b must be ON
to activate the output O. The classical electronic diagram is presented too (Fig. 1.5, right): a gate
associates two electrical inputs and processes the corresponding output.

The OR operator is true if at least one input is true. The notation is: a v b. The electrical diagram of
the OR operator (Fig. 1.5, left) shows that to transmit the current to the output, only one switch has
to be ON.

The NOT operator is unary, it uses only one entry and reverses it. The notation is ¬a. In the
electrical diagram one uses an inverted switch which transmits the current when it is OFF. If one
switches the entry ON, the output will no longer be activated.

Every logical function, i.e. every possible result set of the combination of two Boolean variables, can
be constructed using these three fundamental operators. We then only have to implement AND, OR,
NOT-gates to be able to manage any Boolean function. To implement a logical gate we therefore
need:

- Some kind of electrical pulses to represent inputs.
- Wires to transmit the electrical pulses.
- Processing devices which associate inputs and compute the Boolean result.
- A device placed after the processing device, able to check the output electrical

pulses. This will represent the output.

We thus encode these items in the Game of Life objects as follows:

- Input and output electrical pulses >> Gliders.
- Wires >> Trajectories of glider movements.
- Processing devices >> Collision of gliders.
- Output device >> Collision of gliders with immobile patterns.
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1.3 Collision Reactions

Particulars of glider collisions underpin designs of all logical devices, constructed in the Game of
Life automaton.

1.3.1 Glider Collisions

Fig. 1.6. An example of glider collision.

Gliders annihilate when they collide with each other. In Fig. 1.6 we find an example of how gliders
disappear when they are involved in 90° binary collision.

If we place a right gun, i.e. a gun that emits gliders rightwards, and a left gun side by side, their
streams of gliders will cancel each other as a result of glider collisions. This happens if the two
following conditions are satisfied. The distance between nascent gliders is even (this is 32 in Fig. 1.7).
There is a one-cell vertical offset between the glider streams (Fig. 1.7).

When gliders are at the same level vertically when they collide with each other, the process of
glider streams annihilation is two-phase. Firstly, collision of two gliders generates two 2 x 2 blocks (Fig.
1.8, 1-6). The gliders following the two previous ones crash into the blocks (Fig. 1.8, 23-27). The
blocks and gliders disappear as a result of the collision.

Fig. 1.7. Head on disposition of glider guns.

Fig. 1.8. Two step process of gliders’ disappearance.
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Fig. 1.9. The position of guns that eases control of glider streams.

There are some perturbations which arise during glider collisions (e.g. see Fig. 1.8, 25). To
prevent oncoming gliders from being bit by "debris" of the previous collision we need to keep
quite a big distance between the gliders in the stream. This is the case with the p30 gun (Fig.
1.9). Consequently an adequate positioning of guns allows for the efficient control of streams of
gliders.

1.3.2 Eaters

To design efficient circuits we need to somehow stop a stream of gliders to prevent the gliders
from "polluting" the computational space. There are compact stable patterns, called eaters that
consume gliders and then recovery back to their original form.

Fig. 1.10. Two types of eaters that consume the glider. Upper snapshots (1-5) show collision of a glider with a
stopper. Bottom snapshots (1-13) demonstrate detection of a glider by another eater.

In Fig. 1.10 we can find the two forms of eaters utilized in our further constructions. The
first one will be used as a stopper to prevent glider streams from further expansion. The second eater
will be employed to detect presence of gliders at a given site of the space.

1.4 Implementation of Logical Gates

In the previous sections we acquired basics of logic gate designs and got some clues to utilize glider
collisions. Let us now discuss implementation of basic components - inputs, outputs, and gates -
in configurations dynamics of the Game of Life automaton.
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1.4.1 Input

First of all we must represent electrical pulses going along input wires. The pulses can be
implemented with a glider gun that generates a stream of gliders. Obviously, the wires
themselves will not be "physically" build, they are simply the gliders trajectories. Generally speaking,
a stream of gliders can encode any data. For example, the number "101" will be a series "glider -
no glider - glider". We also want to control glider streams according to the data they carry. Like
in an electrical circuit, the gliders must propagate only if the input is true. We must therefore
find a way to stop the gliders if the input is false. This can be done via coupling the glider gun
with a stopper. As we have seen in the previous sections the eaters eliminate gliders and
therefore terminate the glider streams. So, to feed input data into our computing device we destroy
stoppers situated in specific positions. A stopper can be easily destroyed by activation, i.e.
switching to the state 1, of a resting cell, closest to it. An example, of such "external" activation of
the system is shown in Fig. 1.11. The eater disappears in nine steps (Fig. 1.12) when this
specific cell is activated.

Fig. 1.11. The input activation. The entry cell with coordinates a-4 is colored dark.

Fig. 1.12. Disappearance of the activated stopper.

Positioning the eater carefully relative to the gun, we can stop the gliders unless the input is
activated. When the input is activated, the stopper vanishes opening the way for the signal (Fig. 1.13).
Each input therefore could be represented by such an association of specific patterns, constituting
an element of the logical gates (component). If there are more than one instance of a given input
in an equation, we only have to build one component per instance of the input. The initial values
of course will be identical for each of them.

Fig. 1.13. An entry component after 60 steps.
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1.4.2 Output

Fig. 1.14. Output activation. The light cell is one specifically activated.

If we place an eater on the trajectory of a glider some specific cells are activated only when a
collision occurs (Fig. 1.14). It is not difficult to compute the periodicity of the gate, i.e. the number
of discrete time steps necessary for the signal to join the output. Therefore, to obtain the output
value we simply have to check a state of one specific cell, as e.g. the light cell in the Fig. 1.14.
If the cell is activated the output value is considered to be true, otherwise it is false. We could
have used a stopper to represent the output, however we employed an eater of a different type to
make overall construction transparent.

1.5 Coupling the Components

In order to build a logical gate we will need the following four components, which are based on four
different patterns: input, simple p30 guns, stoppers, and outputs. By combining inputs and guns
it is possible to control the streams of gliders generated by the inputs. Stoppers are used only to
prevent the streams of gliders from propagating outside the gate. The output is used to check the
presence of gliders that result from the computation. Assuming the Game of Life cellular
automaton is used as a hardware device, the only links between the program or interface and
the cellular automaton are the following:

- The positions of the input cells. There is one input cell per input in the logical gate.
- The position of the output cell. There is of course only one output per gate.
- The periodicity of the gate.

To solve a Boolean equation, the interface sets the input cells according to the Boolean variables values
and checks then the output cell at the corresponding generation.

Now we are ready to build basic Boolean operators via coupling inputs with glider
collisions and representing results as glider streams.

1.5.1 The AND-Gate

Fig. 1.15. Implementation of the AND-gate in the Game of Life. There is a gate's scheme on the left and space-
time dynamic, that realizes the gate, on the right.
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The AND-gate requires two input components, A and B, an output  O and a simple gun G. The
structure of the gate is shown in Fig. 1.15.

The B gliders will move forward and join the output only if both A and B input variables are
true. The A and B components are aligned side by side, the gun is perpendicular to the inputs, and
the output is positioned on the trajectory of B gliders. A stopper is placed opposite the gun to stop
the gun's gliders if both inputs are false. Thus, the Game of Life implementation of the AND-gate
exhibits the following input-driven configurations (Fig. 1.16):

Fig. 1.16. Configurations of automaton for various input values of the AND-gate.

- A and B are both false: no glider can activate the output, the result is false.
- A is true and B is false: A stops the gun. Since B is false it cannot activate the output.
- A is false and B is true: B cannot join the output since the gun stops it.
- A and B are true: A stops the gun and B can activate the output. The result is true.

1.5.2 The OR-Gate

The OR-gate is slightly more complex. Obviously, like the AND-gate, it requires two input
components and an output. However, now we need two guns, one parallel to the input and one
perpendicular. The general structure of the gate is shown in Fig. 1.17.

The gliders emitted by the parallel gun will join the output unless both inputs are false. The second
gun, perpendicular to the three others structures is placed near A. A stopper is positioned on the
trajectory B to stop the B gliders when A is false. The output resides on the trajectory of the gliders
emitted by the parallel gun. The configurations of the gun implementation are following (Fig.
1.18):

- A and B are both false: the perpendicular gun stops the parallel gun from activating the
output. The result is false.

- A is true and B is false: A stops the gliders leaving the perpendicular gun, the
parallel gun is free to activate the output. The result is true.

- A is false and B is true: B stops the perpendicular gun, therefore the parallel gun
is free to activate the output. The result is true.

- A and B are true: A stops the gliders emitted by the perpendicular gun, the
stopper stops B, therefore the parallel gun can activate the output. The result
is true.
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Fig. 1.17. Implementation of the OR-gate in the Game of Life. There is a gate's scheme on the left and space-
time dynamic, that realizes the gate, on the right.

Fig. 1.18. Configurations of the automaton for various input values of the OR-gate.

1.5.3 The NOT-Gate

Fig. 1.19. Implementation of the NOT-gate in the Game of Life. There is a gate's scheme on the left and space-
time dynamic, that realizes the gate, on the right.
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Since NOT is an unary operator, its implementation is the simplest one. We only need an input
component, a perpendicular gun and an output (Fig. 1.19). The gun will activate the output
unless A prevents it from doing so.

Fig. 1.20. Configurations of the automaton for various input values of the NOT-gate.

The configurations of the automaton implementation are as follows (Fig. 1.20):

- A is false: The gun is free to activate the output. The result is true.
- A is true: A does not allow the gun to activate the output. The result is false.

The NOT-gate does not simply reverse the input, it also reverses the direction of the activating
glider, i.e. of the output. The construction of a non-inverting NOT-gate is possible but more
complicated. We will see later how to manage the inversion when combining Boolean operators.

1.6 Implementation of Boolean Equations

To implement Boolean equations in the Game of Life automaton we need to couple the gates and to
manage the NOT operation properly.

1.6.1 Gates Associations

Our gates only manage two inputs. To accept more inputs in a given equation we have to break the
equation down in such a way that we always have to consider only two inputs at once. That is we
decompose the original equation onto several simple sub-equations interconnected via their results. The
technique is widely known and is particularly familiar in conveyor computing and automata models of
compilers. However, we discuss it anyway to make the chapter self-contained.

Fig. 1.21. Association of gates.
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The AND and OR operators are associative, therefore it is always possible to pair the Boolean
variables in the equations. Consider, for example, the simple equation A ^ B ^ C. It can be interpreted
as (A ^ B) ^ C. Let (A ^ B) = A',  we have to implement A' = A ^ B and then A’ ^ C. The recursive
application of this method helps to reduce the number of input problems at a time step (Fig. 1.21).
Therefore to implement any equation we only have to combine gates. Outputs of the high level gates are
used as inputs of the lower level gates, e.g. B' is one of the inputs of B’ ^ D. This means that for all the
gates which level is greater than 0, we must remove the output eater. Then, according to the sizes and
positions of these gates, we just have to compute the positions of the components of the lower level.

To build A ^ B ^ C we should firstly design the gate A ^ B (without its output eater) and then
combine its output, which is on the trajectory of B, with C (Fig. 1.22). The gate A' = A ^ B is
colored gray in the Fig. 1.22.

As soon as we know the trajectories of the gate's output gliders, it is not difficult to position correctly
the components of the gate A’ ^ B. In that case the output of the gate A ^ B ^ C is on the C entry
trajectory. If A' = A ^ B is true the gun of A' = A ^ B ^ C will be prevented from activating the output
(Fig. 1.23).

Fig. 1.22. Implementation of the function A ^ B ^ C (up) in space-time dynamic of the Game of Life
automaton (bottom).
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Fig. 1.23. Configuration of the automaton that implements the function A ^ B ^ C all arguments of which take
the value true.

1.6.2 Management of the NOT-Gate

Fig. 1.24. Configuration of the automaton that implements the function ¬A ^ B.

Most components of our constructions have a right side output: the gliders, that activate the
output, move rightward. The NOT-gate we have presented reverses the output: a right side
input results in a left side output. Since we have to combine all three operators, we must manage
the direction problem. Considering that the direction of any component can be reversed, thanks
to the totalistic rules of the Game of Life, this is easy to realize. Given a desired output
direction, we only need to recursively reverse inputs according to the NOT operators. Let us
consider the equation ¬A ^ B. The output is on the B trajectory. Since we want a right side output, B
has to be right sided. It must be combined with the ¬A output which therefore must be right
sided too. To obtain this, we only have to reverse the side of the A entry, if A is left sided, ¬A
becomes right sided (Fig. 1.24).

On this basis we are able to manage any Boolean equation, the only limitations being the
computer memory and the response time. Furthermore we can implement many equations on the same
lattice. Those equations will all be solved in parallel. To illustrate these capabilities let us
examine the example of the following section.
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1.7 Binary Adder

Now we are familiar with the implementation of logical gates and are therefore eager to solve some
combinatorial problems. A binary adder is quite a good example. Let us consider a sum of one-bit
numbers x and y. The results of the addition can be written as follows:

x y Sum Carry
-----------------------------
0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

The one bit sum s represents the value of x XOR y (x ω y). The XOR operator is true if one and
only one of both variables is true. The carry bit c represents x ^ y.

Let x and y be n-bit values represented as follows:

xnxn-1…x0 and ynyn-1…y0

Then

s0 = x0 + y0 and si = xi + yi +ci-1

where ci is the carry bit of the sum xi + yi, and i = 1…n. We have

s0 = x0 ω y0

si = xi ω yi ω ci-1

and

ci = (xi ^yi) v ((xi ω yi) ^ci-1),

where i = 1…n.

The result is expressed on n + 1 bits (bn+1bn…b1b0) where bi = si for i = 0…n and bn+1 is the carry
bit cn. For example, if x and y are two-bit values then we have the following:

x1 x0
+ y1 y0
----------------
b2 b1 b0

The three bits of the result are

b0 = x0 ω y0

b1 = y1 ω x1 ω (x0 ^ y0)

and

b2 = c1 = (x1 ^ y1) v [(x1 ω y1) ^ (x0 ^ y0)]
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Fig. 1.25. Configuration of the automaton computing b0 for the addition 10 + 10.

Since we did not directly implement the XOR operator we must construct it with the three
fundamental operators. XOR is classically defined as

x ω y = (x ^ ¬y) v (¬x ^ y)

but we need ten guns to represent this equation. If we use the representation

x ω y = (x v y) ^ ¬(x ^ y)

then we only need nine guns. We therefore have (Fig. 1.25):

b0 = x0 ω y0 = (x0 v y0) ^ ¬(x0 ^ y0)

One could notice that since we want to combine ¬(x0 ^ y0) with (x0 v y0) we must reverse the
direction of (x0 ^ y0). It is more difficult to deal with the second bit (Fig. 1.26)

b1 = y1 ω x1 ω (x0 ^ y0) = (((y1 v x1) ^ ¬(y1 ^ x1)) v (x0 ^ y0)) ^
¬(((y1 v x1) ^ ¬(y1 ^ x1)) ^ (x0 ^ y0)).

The last bit is as follows (Fig. 1.27):

b2 = (x1 ^ y1) v [(x1 ω y1) ^ (x0 ^ y0)] =
(x1 ^ y1) v [((x1 v y1) ^ ¬(x1 ^ y1)) ^ (x0 ^ y0)].

We then only have to map all three equations onto the same cellular automata lattice to
obtain a proper implementation of the binary adder. The equations are computed in parallel (Fig.
1.28). The result of 11 + 11 is 110.
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Fig. 1.26. Configuration of the automaton computing b1 for 10 + 01.

Fig. 1.27. Configuration of the automaton computing b2 for 11 + 11.
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Fig. 1.28. Configuration of the automaton implementing binary adder for 11 + 11.

1.8 Conclusion

In this chapter we have shown how basic logical gates and functions can be implemented via
collision of gliders in the Game of Life cellular automaton. We tried to keep ideas, underlying our
constructions, as simple and intuitive as possible. As a result the built objects are understandable
but rather non-efficient. Since the distance between the gliders of entry components is greater than the
guns periods, the function of glider-based circuit response time r can be seen as a function
r = f(2d, n + 2a + 3o, b) of the distance d between the gliders of the guns and of input components,
the numbers n, a, o of NOT, AND and OR operators in problem equation, and the value b
characterizing offsets, or positions of the output components. When logical computation in the
Game of Life cellular automaton is simulated in Java, in LogiCell software [4], 400 MHz
Pentium II, the response time for the two bits binary adders is circa 2.5 minutes. Actually, the
model can be greatly sped up. Some useful constructions, including copies and complementing the
signals without turning glider streams and implementation of a delay operation, can be found in [2].
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